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ON THE ZONES OF INFLUENCE AND DEPENDENCE FOR A MODEL SYSTEM OF EQUATIONS 
IN THE THEORY OF THE THREE-DIMENSIONAL BOUNDARY LAYER* 

O.V. TITOV 

A model system of non-linear equations is considered, differing from the 
system of equations of the three-dimensional boundary layer of an 
incompressible fluid only in the fact, that in the equations of motion 

the component u of the velocity vector along the normal to the body is 
replaced by the value of this function in some region of diameter not 

larger than 2~~ e-averaged over the spatial coordinates. Since the 

function 2, represents the limit of averaging as E--+0, it is likely 
that for sufficiently small E the solution of the system in question 
will differ by an arbitrarily small amount from the solution of the 
system of equations of the three-dimensional boundary layer (the problem 
of convergence towards this solution is not investigated). 

It is shown that when the components of the pressure gradient are 
negative and the conditions of adhesion or suction at the surface of the 
body hold, the model system of equations in question has, fox any a)O, 
not more than one solution and possesses definitely the zones of 
influence and dependence which are assigned, without proper mathematical 
justification, to the boundary layer flows on the basis of physical 
considerations or computations /l, 2/. In addition, an explicit 
estimate is given independent of E, for the distribution of the zones 
shown, depending on the initial and boundary perturbations of the flow. 

I. Pomrdation of the probtem. Let GcR4(z,y,z, t) be the region defined by the con- 
ditions O<B<X,O<~<Y,,O<~<Z,O<~<T. Let us consider in G the system of equations 
with boundary conditions 

l'uyy- WAX-"Ur-WUf - Ilt= Q,/p 

ywYY .- 
WI - “WI/ - wluz - Wt = p,Ip 

~.c+~,+~z=o 

I&= w= 0, u = V (z, z, t) for y = 0 
u.= u, w=W 

on acfi I&= 0) il lz= Of U it= 0) u $Y = YH and u)o. W>O when y>O HJ&>O, aW/ay>O when 
Y >O. The function pxfp,pJp is assumed to be given and negative, and compatibility P/P + 
(u-2 + W)/Z = oon3t in the outer flow is, in general, not assumed. 

The system of Eqs.(l.l) represents a classical system of equations of the three-dimen- 
sional laminar boundary layer (e.g. /3/l with conditions of adhesion or suction at the surface 
of the body. The physical coordinates x, y, s are chosen so that the X and Z axes are 
parallel, and Y axis is perpendicular to the surface of the streamlined body, U, v, w are 
the components of the velocity vector along the X, Y and 2 axes respectively. In what follows, 
we shall use the following notation: r=(z, y, z) =R3(z, y, z) is a point in three-dimensional 
space, 1 P I= I/S+ y” + z5, dr= dzdydz is a volume element in R3(+, y,z), dV= dxdydzdt is the volume 
element in R" (I, Y, I, % B CT: 4 is a sphere of radius Q in R3(+, Y, 2) with centre at the point 
~,G(~,~,Z)=~O;X~X]O;Y[X~O;Z[CR*(~,~,~)~~~~,Z-T;~,~,~-~,~,~;X,Y,Z-.Y,Z,T). 

We shall modify the system of Eqs.(l.l) using the averaging operation. Let o (2, Y, 2) 
be a smoothing function, i.e. a non-negative, infinitely differentiable function such that 

its carrier S”PP 69 is contained within the sphere B(0; 1) and 
f 

w(r)&= 1. We put 
SUPP w 
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for any e>O and for any function f(r,t) defined on R'(t. I/,z) X IO; T[ and locally sum- 
mable over the variable 2, y, z. We shall call the function 
f averaged over the spatial coordinates. 

fee, the c-mean of the function 
We know /4/ that for the continuous function f we 

have lim f(=) = f as 8-0 everywhere, the operation of averaging can be permuted with that 

of differentiation, and 

Vf(,) = - s f hr t) -,,, e 01) drl (1.3) 

SUPP %.P, 

(the gradient is taken over the spatial variables). 
Let us apply the averaging operation to the last equation of (l.l), having previously 

continued the functions u, V, w from the region G to the whole region R8(z, y, z) X] 0: T [. Then 
we will have, at all points (r,t)~G(z,g,z) XlO;TI such that the point r is separated from 
.aS (I. I/. 4 by a distance of at least e, 

and this enables us to approximate the function v in the first two equations of (1.1) by 

,(Q = v (2, 2, f) - I, 
’ a a @xz Sf a3: “(8) + dz %) ]dy, V(hf)oG 

0 

(the functions u and w are assumed to have been continued, by the zeros, to the whole region 
R3(z,y,z) x10; TL outside G) and consider, in the region G, a system of equations differing 
from the first two equations of (1.1) in that v is replaced by "(8) with the boundary Con- 
ditions (1.2) already described for the functions u, W and with the iame assumptions con- 

cerning U, W, PJP, PJP. 
The corresponding boundary value problem, which we shall call for short the model problem, 

will be considered for any smoothing function o and any e > 0. Additional constraints will 
be imposed on the position of the carrier suppo of the smoothing function within the 
sphere B(0; i) only in connection with describing the zones of influence and dependence. 

2. Certain properties of the solution of the mode2 problem and the theorem of uniqueness. 
The arguments used in /5/, where a number of properties of the solutions of exact boundary 
value Problem (l-l), (1.2) were established, can also be applied to the model problem. Using 
these arguments we can prove the following theorem. 

Theorem 2.2. Let u, w be the solution of class Ca (C) of the model problem. Then for 

any e>O we have, everywhere in G, 

O<u dmax V-l- tmax (-_p,lP) (u--t w, u- W, r-4 (2.1) 

and the relations E=O, IU= 0 are reached only when 9==0 and we have 

infEi; min2 
w 

A=min 
A* 

s>ou d pr 
, B=max 

t 
sn,P-5_; m__axp 

G = 

everywhere within the region 
A 5 w/u <B (2.2) 

The estimates (2.1) will be used below in proving the uniqueness of Theorem 2.2., and 
the inequality (2.2) enables us to describe explicitly the zones of influence and dependence, 

Theorem 2.2. The model problem has, for any 8>0, not more than a single solution 

P. VJ E I? (E). 

Proof. Suppose that two solutions %* Wl and ua, w. of the model problem exist. We 
write 

rp = (I$ - u,) ,-1t, I$J = (u), - zlY*)Fh* (3.3) 

where a sufficiently large value of the positive parameter h will be given later. The 

functions y, * satisfy the system of equations 

vm,*- u,cp,-v~)i$j/- Wlcp 1 -m'Pt--o-U2*'P-U2*9+ u,J=O (2.4) 

V$',,- "l*x-+%J -w&-$*--N-- W,&B-- wzz*+ "UJ= 0 (2.5) 
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with boundary conditions cp==*=o, on the set 

M = aG n [(5 = O)U (y = 0) IJ (2 = 0) u (t = 0) u (y = rll 

Multiplying both sides of Eq.(2.4) by tp and integrating over the region G, we shall 
write the result of these operations in the form 

Since by virtue of (2.1) all terms on the left-hand side of (2.6) except, perhaps, the 
last, are non-negative, the following inequality holds: 

s 
FdV<O (2.7) 

G 

Let us obtain an analogous inequality using (2.5), and combine it, term by term, with 
(2.7) I and use (1.3) and the Schwaxtsineguality to estimate the resulting series of terms. 
We obtain (the maximum is taken over (7) 

(the constant C, is obtained from c1 when &@z is replaced by a/ad. Since for sufficiently 
large I the integral on the left-hand side of inequality (2.8) becomes non-negative, we can 
avoid the contradiction only when cfrr=Yr,O in G, and this proves Theorem 2.2. 

3. &mes of ~nf~~~e and dependence. Unlike the case of a two-a~mensiona~ boundary 
layer, the perturbation formed at some point of the three-dimensional boundary layers spreads 
not into the whole region of the flow, but only into the region of influence of the point in 
question. The regions of influence and dependence are determined by two surfaces formed by 
the normals to the body and passing through the boundary stream line at the surface of the 
body, and the stream line of the external flow. This property, mentioned in many papers, 
lacks a strict mathematical foundation. Below we shall show that for any a>? the model 
system of equations has indeed the zones of influence and dependence resembling those described 
above. 

Let g, ml be a solution of the model problem in % WP is the solution of the system 
of equations obtained from the model system after replacing the function vial by the function 
V&, 2, t) - AV(z,z,t)-r, and the function pip, pa/p by the function p.,/p - A Cp,ip) and PJP - A @,!P) 
respectively, with the boundary conditions %= U-AU, w%'= w- h~'on the set M. 

Apart from the necessary assumptions connected with the continuity and differentiability 
a corresponding number of times, no restrictions are imposed on the perturbations AU, AV, AW, 

A kc&+, A h/p) . However, whereas when proving the theorem of uniqueness the carrier SUPP 0 
could be arbitrarily positioned in B&i), here we shall require that it be positioned within 
a part of the sphere B(O; 1) projecting along the Y axis onto the sector of the unit circle 
xa + z* q i such, that S<O,Z~O and 

A < z/x d B (8.l) 
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(in other words, the averaging is carried out "upstream"). We denote by A (to),, for any 
to E (0; PI, the union of the projections along the Y axis onto the rectangle ]n;X] X [O;Z] c R* 
(1, 2) of the subset from 

ac r, ](s = 0) 1J {u = 0) u {z = o} u {$ = Y} ii (t = to)1 

on which at least one of the perturbations AU,AW is different from zero, and of the subset 
from G(s, y, Z) x {t = to) on which at least one of the perturbations AV, A &/P), A (p,/p) is dif- 
ferent from zero. Further, we denote by A a set of points swept through in the rectangle 
(0; Xl x (0; Zl by all rays directed "downstream", originating at some point of the set 
IJ A (to), 0 < to < T and inclinded to the X axis at an angle a such, that 

A < tg oc .;;O (3.") 

Let finally Q=((]O:XlX]O; ZO\A~~~O;YIX~~;T((~~ note that the region A, as well as 
Q, are both independent of E). 

Theorem 3.1. We have, within the region Q, u1 = us, WI = Lo2 automatically, i.e. for 
any &>O the cylinder A X]O;Y(X]O;T[ will contain a zone of influence of the perturbations 

Au, AV, A.w, A WP) A (P,/P). 

Proof. We consider, as before, the functions (2.3). The functions 'p satisfies in the 
region G an equation differing from (2.4) in the fact that its right-hand side contains the 
quantity g= [A(p,/p)+ ~IIAV]~-h* with boundary condition <p = A&-+ on the set M. 

Multiplying both sides of this equation by '11, we shall integrate it over the region Q. 
We can write the result in the form 

fn = (nx, ny, n,, 4 is the vector of the outer normal at the boundary @Q (wherever it is 
defined), and do is the surface element on an). 

The perturbations AV, A(p,fp), A(p,/p) are zero in the region 9. Moreover, the product 
of 'pnv and asl is also equal to zero either by virtue of the fact that 'p=O when y-0 
and when JJ= Y, or because ny = 0 when O<Y<Y. The function (ulnr+ m,n,+ nt) @ on aQ is 
also non-negative, since the function cp is non-zero wherever possible. From (2.1), (2.2) 
and the assumption (3.2) we find, that the sum %%zi- WI& -t "t is non-negative (if O<t<T. 
then n* = 0 and the angle between the vector (%,n,) and (ul,wI) cannot be obtuse by virtue 
of the construction of the region St). Taking all this into account we find from (3.3) that 
the function fp satisfies the inequality (2.7) when the region of integration G is replaced 

by D. 
Further proof that cp=lp==O is the region Q is analogous to the proof of Theorem 2.2. 

The only difference is that, when the integrals of the type 
s 
$IdV 

P 
arbitrary carrier S"PP %,e in the sphere B (r: 8) , we can no longer 

S @(?-I, f) &Q S @'hr t) drx 
SUPP WI. e (([o; X)X@: Zl)\A,XIo; Yl 

are estimated for an 

assert that 

(3.4) 

However, from the assumptions (3.2) and (3.1) we find that for any point re(([O; Xl x (0; 
Z])\ A) x IO; Yl the carrier S"PP or,* will be fully contained within the set ((]O;X] X [O;Z])\ 
A) x lo; Yl, and the inequality (3.4) will continue to hold, and this completes the proof of 
Theorem 3.1. 

It is clear that in order to construct the region of dependence for some subregion Dc 
G it is necessary to project i? onto the rectangle [O; X]X (0; Z] and then draw, from all points 
of this projection D,, *, rays in the "upstream" direction making with the X axis an angle 
a such that (3.2) holds. If P is the region swept by these rays in IO; xl x IO; Zi, then 
the cylinder I' x 10;~)~ 10; T] will automatically contain the region of dependence for the 
subregion D. 
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EXACT SOLUTIONS AND NUMERICAL ANALYSIS OF THE PROBLEM OF AN INTENSE EXPLOSION 
IN CERTAIN IDEAL COMPRESSIBLE MEDIA* 

N.A. BELOV 

The well-known selfsimilar problem of an intense explosion in an ideal 
compressible medium possessing a certain arbitrariness in the form of 
the internal energy is considered. The problem was formulated by 
Sedov. The existence of the first two integrals reduces the problem to 
the study of the integrability of a single, first-order differential 
equation. 

We will show that even in the simplest case when the problem has 
planar symmetry, and the equation reduces, in the general case, to an 
Abel equation with functional coefficients which is not integrable in 
quadratures. A special case of its integrability is found, which 
enables us to write out the analytic solutions of the problem for a 
certain family of media including real and dust-containing gases (under 
the assumption that the phase parameters are in equilibrium). The 
results generalize the results obtained earlier /l-4/. All solutions 
obtained can be continued to the plane of symmetry, and their asymptotic 
behaviour near it is investigated. 

A numerical analysis of the problem is carried out for the same 
family of media for the cylindrical and spherical cases. Two new 
effects are found for disperse media such as a liquid with bubbles and a 
dusty gas (previously studied numerically in /5, 6/), namely the 
non-monotonic form of the velocity behind the shock wave, and the effect 
of incompressibility when the mixture contains a fairly small amount of 
gas. In the spherical case the limit solution of the problem, when the 
amount of gas is reduced, is represented by the well-known solution of 
the problem of an intense explosion in an incompressible fluid. 

I. We shall give a brief formulation of the problem (given in greater detail in /l, 2/). 
Let the internal energy density have the form 

e (P, P) = P(P (B)/PO> &! = PIP0 (f.1) 

where p and p are the pressure'and density, and cp is an arbitrary function. In.this case 
the problem is selfsimilar (two independent dimensional constants are the energy of the 
explosion, and p. is a constant with dimensions of density), 
g, the velocity 

and the dimensionless density 
f = v/z*' and the pressure h=p/(&zsz,‘*) satisfy the system of three first- 

order ordinary differential equations obtained from the equations of continuity, motion and 
conservation of entropy within the particle: 
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